declaration for friend function
In C++11 it is possible to make a public member of a private base class accessible to the outside (public) with a using declaration. For example
class A {
private:
int i = 2;
public:
void f() { i = 3; }
friend bool operator==(const A& l, const A& r) { return l.i == r.i; }
};
class B : private A {
public:
using A::f;
};
int main() {
B b, b2;
b.f();
}
bf() is possible because of the using A::f in the definition of B .
Is it possible write a similar declaration which would make the up-cast from B& to A& possible for the friend function operator==(A&, A&) , so that b == b2 can be called in main() ?
No, only B can internally cast itself to A , and it otherwise is not possible because from a client's perspective B is not an A but rather has an A
Even if you replaced your friend bool operator= with a member function equals :
class A {
private:
int i = 2;
public:
void f() { i = 3; }
bool equals(const A& r){return i == r.i;}
};
class B : private A {
public:
using A::f;
using A::equals;
};
While this compiles, you cannot ever call b.equals(b2) because no implicit conversion is ever possible from a type of B to a type of A from the caller's perspective (due to private inheritance) .
You'll need to provide your own operator== or change your inheritance to public or protected . Here's an example where B declares its own friend bool operator==
class B : private A {
public:
using A::f;
friend bool operator==(const B& l, const B& r)
{
return (static_cast<A>(l) == static_cast<A>(r)) && true;
// "true" is a stand-in for some other condition
}
};
Read more at isocpp
Edit: If you really want to play games, you will notice that I said no implicit conversion is ever possible, but some explicit conversions are. Because B does technically derive from A you can do pointer casting to make it work, but I don't recommend it:
class A {
private:
int i = 2;
public:
void f() { i = 3; }
bool equals(const A* r){return i == r->i;}
};
class B : private A {
public:
using A::f;
using A::equals;
};
int main() {
B b, b2;
b.f();
(::A*)(&b)->equals((::A*)(&b2));
}
Or you could use pointer casting's ugly cousin, reference casting, if you wish to keep the original operator== syntax
class A {
private:
int i = 2;
public:
void f() { i = 3; }
friend bool operator==(const A& l, const A& r) { return l.i == r.i; }
};
class B : private A {
public:
using A::f;
};
int main() {
B b, b2;
b.f();
((::A&)(b)) == ((::A&)(b2));
}
See §11.2 [class.access.base] for more
链接地址: http://www.djcxy.com/p/94200.html下一篇: 声明朋友功能
