I've been working on a game engine for awhile. I've started out with 2D Graphics with just SDL but I've slowly been moving towards 3D capabilities by using OpenGL. Most of the documentation I've seen about "how to get things done," use GLUT, which I am not using. The question is how do I create a "camera" in OpenGL that I could move around a 3D environment
我一直在研究游戏引擎。 我刚刚开始使用SDL,但使用OpenGL逐渐向3D功能发展。 我所见过的大部分关于“如何完成任务”的文档都使用了GLUT,而我并未使用它。 问题是如何在OpenGL中创建一个“相机”,我可以在3D环境中移动并正确显示3D模型以及精灵(例如,具有固定位置和旋转的精灵)。 我应该关注哪些功能以便在OpenGL相机中设置相机,以及按照什么顺序调用相机? 这里有一些背景资料可以说明为什么我需要一台实际的相机。
I am using Clang as a library to compile some templated code: template<typename T> T getSevenTemplated() { return 7; } int getSeven() { return getSevenTemplated<int>(); } Unfortunately, the compiled LLVM IR does not actually contain the implementation of getSevenTemplated<int> : ; ModuleID = './test.cpp' source_filename = "./test.cpp" target datalayout = "e-m:o-i64:64-f8
我使用Clang作为库来编译一些模板代码: template<typename T> T getSevenTemplated() { return 7; } int getSeven() { return getSevenTemplated<int>(); } 不幸的是,编译的LLVM IR实际上并不包含getSevenTemplated<int> : ; ModuleID = './test.cpp' source_filename = "./test.cpp" target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128" target triple = "x86_64-apple-macosx10.12.0"
I am very new to static routing, our client requested to implement static routing for sockets. When I googled I came across with rtentry to set routing information. When I opened this structure I saw the fields for static routing struct sockaddr rt_dst; /* Target address. */ struct sockaddr rt_gateway; /* Gateway addr (RTF_GATEWAY). */ struct sockaddr rt_genmask; /* Target networ
我对静态路由非常陌生,我们的客户端要求为套接字实现静态路由。 当我rtentry ,我遇到了rtentry来设置路由信息。 当我打开这个结构时,我看到了静态路由的字段 struct sockaddr rt_dst; /* Target address. */ struct sockaddr rt_gateway; /* Gateway addr (RTF_GATEWAY). */ struct sockaddr rt_genmask; /* Target network mask (IP). */ 但是,我怎样才能在这里设置多个条目? 创建多个rtentry并调用io
I am new to C++, but I was under the impression that virtual in C++ was the equivalent of abstract in Java. I have the following: //A.h class A { public: void method(); protected: virtual void helper(); } With the following cpp: //A.cpp #include "A.h" void A::methodA() { //do stuff helper(); } Then here's the derived class: //B.h #include "A.h" class B: public A{ private
我是C ++的新手,但我的印象是,C ++中的虚拟内容与Java中的抽象内容相当。 我有以下几点: //A.h class A { public: void method(); protected: virtual void helper(); } 用下面的cpp: //A.cpp #include "A.h" void A::methodA() { //do stuff helper(); } 那么这里是派生类: //B.h #include "A.h" class B: public A{ private: void helper2(); } 和以下派生的cpp: //B.cpp #include "B.h" vo
I have used gcov for testing code coverage, but when it comes to templated c++ code it doesn't work so well. I use boost::spirit extensively and gcov seems to simply ignore templated spirit code. Also I am wondering if there is a coverage tool to show how threads interacts with each other, pinpointing the possible branches/race conditions/execution flows actually executed. TestCocoon is
我已经使用gcov来测试代码覆盖率,但是当涉及到模板化的c ++代码时,它并不能很好地工作。 我广泛使用boost :: spirit,gcov似乎简单地忽略模板化的spirit代码。 另外我想知道是否有覆盖工具来显示线程如何相互交互,确定可能的分支/竞争条件/实际执行的流程。 TestCocoon是一个很好的工具,比gcov更好,它具有良好的工具和报告功能。 由于模板是编译时的野兽,我不确定你想得到什么覆盖率信息? 我的两分钱 我在一个
My question is different from though similar to the ones such as: Tools to reverse engineer C++ ( ie to view C++ classes ) Instead of looking for class diagrams, I'm more interested in finding call chains and dependencies and generating nice-looking graphs. Is there such a tool? I know cscope and ctags can do a little bit of what I'd like to do but in very much low-level interactiv
我的问题与以下类似: 反向工程C ++的工具(即查看C ++类) 而不是寻找类图,我更感兴趣的是找到调用链和依赖关系,并生成漂亮的图。 有这样的工具吗? 我知道cscope和ctags可以做一些我想做的事情,但是采用非常低级别的交互方式(一次一个查询)。 我想要一些更自动化的东西,例如给定一个API,找到它的所有子例程调用路径,直到它到达树叶并显示给我。 有没有一个工具呢? 是否有可能在二进制级别执行? 像库中的
boost::shared_mutex or std::shared_mutex (C++17) can be used for single writer, multiple reader access. As an educational exercise, I put together a simple implementation that uses spinlocking and has other limitations (eg. fairness policy), but is obviously not intended to be used in real applications. The idea is that the mutex keeps a reference count that is zero if no thread holds the lock
boost::shared_mutex或std::shared_mutex (C ++ 17)可用于单个写入器,多个读取器访问。 作为一个教育练习,我将一个使用spinlocking的简单实现放在一起,并具有其他限制(例如公平性策略),但显然不打算用于实际应用。 这个想法是,如果没有线程持有锁,互斥量会保持为零的引用计数。 如果> 0,则该值表示有权访问的读取器的数量。 如果-1,一个作家有权访问。 这是否是一个没有数据竞争的正确实现(特别是使用了
Have someone input an integer N as the number of vertices in the graph. Assign random weights on each edges ranging from 1 to 10. Not all possible edges are present though! As in the above example, represented an absent edge by an X. Return a pair (M,L), with M and L respectively being the matrix and list representation of the (same) random graph you are generating. Use non-digit character
让某人输入一个整数N作为图中顶点的数量。 在范围从1到10的每个边上分配随机权重。尽管不是所有可能的边都存在! 正如在上面的例子中,表示一个X的缺席边缘。 返回一对(M,L),其中M和L分别是您生成的(相同)随机图的矩阵和列表表示。 使用非数字字符作为顶点名称,以避免与边权重混淆。 #include <iostream> #include <stdlib.h> using namespace std; void gen_random_graph(int n) { int adj_matri
An interesting problem I've been pondering the past few days is how to copy one integer's bits into another integer at a given position in the destination integer. So, for example, given the destination integer 0xdeadbeef and the source integer 0xabcd , the idea would be to get a result of 0xabcdbeef (given a destination position of 16 bits) or 0xdeabcdef (given a destination position of
过去几天我一直在思考的一个有趣问题是如何将一个整数的位复制到目标整数给定位置处的另一个整数中。 因此,例如,给定目标整数0xdeadbeef和源整数0xabcd ,这个想法将得到0xabcdbeef (给定目标位置为16位)或0xdeabcdef (给定目标位置为8位)的结果。 随着避免条件或循环的任意限制(允许我只使用数学/位操作),我开发了以下函数(C ++) int setbits(int destination, int source, int at, int numbits) { int ones
I seem to see many answers in which someone suggests using <random> to generate random numbers, usually along with code like this: std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<> dis(0, 5); dis(gen); Usually this replaces some kind of "unholy abomination" such as: srand(time(NULL)); rand()%6; We might criticize the old way by arguing that
我似乎看到很多答案,其中有人建议使用<random>生成随机数字,通常伴随着这样的代码: std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<> dis(0, 5); dis(gen); 通常这会取代某种“不圣洁的憎恶”,例如: srand(time(NULL)); rand()%6; 我们可以通过争论time(NULL)提供低熵, time(NULL)是可预测的以及最终结果不均匀来批评旧的方法。 但所有这一切都适用于新的方式:它只是