I'm a basic runner for openCV and image processing. Now using openCV to calculate the center point coordinate of the region of white pixels area like a link file. But that's not easy for me to find out exact center of this white circle. I think there are some steps to increase accuracy of center coordinate of it before finding the center point. Would you share your idea or any tip wit
我是openCV和图像处理的基本运行者。 现在使用openCV像链接文件一样计算白色像素区域的中心点坐标。 但是,我很难找到这个白色圆圈的确切中心。 我认为在找到中心点之前,有一些步骤可以提高它的中心坐标的准确性。 你会与我分享你的想法或任何提示吗? 感谢,并有一个愉快的一天 图片路径:http://blog.naver.com/colorring/220027355998(修改后的路径) // ------------------------------------------------ ------
in Foo.h: class Foo { public: Foo(); static const unsigned int FOOBAR = 10; static const unsigned int BARFOO = 20; private: unsigned int m_FooBar; bool m_Bar; void Bar(); }; in Foo.cpp: Foo::Foo() : m_FooBar(FOOBAR), // this works m_Bar(false) { } void Foo::Bar() { //m_FooBar = m_Bar ? FOOBAR : BARFOO; // linker fails *1 m_FooBar = FOOBAR; // ok } I
在Foo.h中: class Foo { public: Foo(); static const unsigned int FOOBAR = 10; static const unsigned int BARFOO = 20; private: unsigned int m_FooBar; bool m_Bar; void Bar(); }; 在Foo.cpp中: Foo::Foo() : m_FooBar(FOOBAR), // this works m_Bar(false) { } void Foo::Bar() { //m_FooBar = m_Bar ? FOOBAR : BARFOO; // linker fails *1 m_FooBar = FOOBAR; // ok
//fills my vector with pointers. //(some are pointing places, others are set to nullptr vector<Tree_NodeT*> xml_trees {Build_Tree_List(program_options->Get_Files())}; //time to print them for (auto tree = xml_trees.begin(); tree != xml_trees.end(); ++tree){ if (*tree){ (*tree)->Print(std::cout,4); } } //this worked! No Segfaults! //time to print them again for (auto
//fills my vector with pointers. //(some are pointing places, others are set to nullptr vector<Tree_NodeT*> xml_trees {Build_Tree_List(program_options->Get_Files())}; //time to print them for (auto tree = xml_trees.begin(); tree != xml_trees.end(); ++tree){ if (*tree){ (*tree)->Print(std::cout,4); } } //this worked! No Segfaults! //time to print them again for (auto
Does OpenMP support an atomic minimum for C++11? If OpenMP has no portable method: Is there some way of doing it using a x86 or amd64 feature? In the OpenMP specifications I found nothing for C++ but the Fortran version seems to support it. See 2.8.5 of the v3.1 for the details. For C++ it states binop is one of +, *, -, /, &, ^, |, <<, or >>. but for Fortran it states
OpenMP是否支持C ++ 11的原子最小值? 如果OpenMP没有可移植的方法:是否有某种使用x86或amd64功能的方法? 在OpenMP规范中,我没有发现C ++,但Fortran版本似乎支持它。 有关详细信息,请参阅v3.1的2.8.5。 对于C ++来说 binop是+,*, - ,/,&,^,|,<<或>>中的一个。 但是对于Fortran而言 intrinsic_procedure_name是MAX,MIN,IAND,IOR或IEOR之一。 如果您对更多上下文感兴趣:我正在寻找无互
I am having run-time memory allocation errors with a C++ application. I have eliminated memory leaks, invalid pointer references and out-of-bounds vector assignments as the source of the issue - I am pretty sure it's something to do with memory fragmentation and I am hoping to get help with how to further diagnose and correct the problem. My code is too large to post (about 15,000 lines -
我有一个C ++应用程序的运行时内存分配错误。 我已经消除了内存泄漏,无效指针引用和超出边界向量分配作为问题的来源 - 我非常确定这是与内存碎片有关的事情,我希望能够得到如何进一步诊断和纠正的帮助问题。 我的代码太大而无法发布(大约15,000行 - 我知道不是很大,但显然太大而无法在线),所以我将用几个相关的代码片段来描述事情。 基本上,我的程序将一串字符串和数字数据集作为输入(具有double,string,int和boo
I would like to do some parsing and tokenizing in c++ for learning purposes. Now I often times came across bison/yacc and lex when reading about this subject online. Would there be any mayor benefit of using those over for instance a tokenizer/parser written using STL or boost::regex or maybe even just C? I recently undertook writing a simple lexer and parser. It turned out that the lexer w
为了学习目的,我想在c ++中做一些解析和标记。 当我在网上阅读有关这个主题时,我经常遇到bison / yacc和lex。 是否有任何市长利益使用这些例如使用STL或boost :: regex编写的标记器/解析器,或者甚至可能只是C? 我最近写了一个简单的词法和解析器。 事实证明,词法分析器手工编码更简单。 但解析器有点困难。 我的野牛生成的解析器几乎可以马上工作,它给了我很多关于我忘记了状态的有用信息。 后来我手工编写了同
I'm trying to find a C++ library that handles polynomials over some finite field GF(2^n) and have support of matrix representation with support for rank finding/inverse or even solving A=X*B. I'm trying to use Linbox, but there's very little documentation. What I was able to do it to transform an integer to a polynomial representation after doing some nasty stuff with the Givaro par
我试图找到一个C ++库来处理一些有限域GF(2 ^ n)上的多项式,并且支持矩阵表示,支持秩查找/求逆或者甚至求解A = X * B。 我正在尝试使用Linbox,但只有很少的文档。 我能做到这一点后,做一些整数转换为多项式表示后,与库的Givaro部分做了一些讨厌的东西,但我不能使用Linbox的排名/解决部分,因为他们似乎不处理多项式,只有指数为1的素数基(GF(2))。 这是代码的一部分 LinBox::GivaroGfq GF28(2, 8); typedef LinB
I'm in a situation where I have to perform some linear algebra calculations with a matrix that almost never changes and a lot of small vectors ( very very few 3x3 or 4x4 matrices and vectors with 3 values ) in C++, I was thinking about using some CPU instructions set for x86 32 bit, x86 64 bit, ARMv5 and above to speed up things and simplify the design of my math operations. Surprisingly I
我处于一种情况,我必须用几乎不会改变的矩阵进行一些线性代数计算,并且我正在考虑使用C ++中的很多小向量(极少数3x3或4x4矩阵和带有3个值的向量)一些针对x86 32位,x86 64位,ARMv5以及更高版本的CPU指令可加快速度并简化数学运算的设计。 令人惊讶的是,我还没有找到线性代数的真实集合,其中大部分都是浮点数学,缓存,按照您的要求进行了优化,但对矩阵和线性代数没有任何真正的意义,仅仅是我或者没有为线性代数设置集
The NTL library seems to work, using this (sorry I'm quite unable to program in C++) code #include <NTL/GF2E.h> #include <NTL/GF2EX.h> #include <NTL/GF2X.h> #include <NTL/GF2XFactoring.h> NTL_CLIENT int main() { GF2X P = BuildIrred_GF2X(256); GF2E::init(P); GF2E zero = GF2E::zero(); GF2E one; GF2E r = random_GF2E(); GF2E r2 = random_GF2E();
NTL库似乎工作,使用这个(对不起,我很不能用C ++编程)代码 #include <NTL/GF2E.h> #include <NTL/GF2EX.h> #include <NTL/GF2X.h> #include <NTL/GF2XFactoring.h> NTL_CLIENT int main() { GF2X P = BuildIrred_GF2X(256); GF2E::init(P); GF2E zero = GF2E::zero(); GF2E one; GF2E r = random_GF2E(); GF2E r2 = random_GF2E(); conv(one, 1L); cout <<
I'm writing an application where quite a bit of the computational time will be devoted to performing basic linear algebra operations (add, multiply, multiply by vector, multiply by scalar, etc.) on sparse matrices and vectors. Up to this point, we've built a prototype using C++ and the Boost matrix library. I'm considering switching to Python, to ease of coding the application itse
我正在编写一个应用程序,其中相当多的计算时间将用于执行稀疏矩阵和向量上的基本线性代数运算(添加,乘法,乘以向量,乘以标量等)。 到目前为止,我们已经使用C ++和Boost矩阵库构建了一个原型。 我正在考虑切换到Python,以便于编写应用程序本身,因为Boost库(简易C ++线性代数库)似乎并不是特别快。 这是一个研究/概念验证应用程序,所以只要编码时间也大大减少,那么运行时速度的一些降低是可以接受的(因为我认为C